[Bat1992] J. Battjes, K. Bachmann, and F. Bouman.
Early development of capitula in Microseris pygmaea D. Don strains
C96 and A92 (Asteraceae: Lactuceae). Botanische Jahrbücher Systematik,
113(4):461-475, 1992.
[Bel1985] A. D. Bell. On the astogeny of six-cornered
clones: an aspect of modular construction. In J. White, editor, Studies
on plant demography: A festschrift for John L. Harper, pages 187-207.
Academic Press, London, 1985
[Cam1993] S. Camazine. Designed by Nature.
The World and I, pages 202-208, March 1993.
[Ede1960] M. Eden. A two-dimensional growth process.
In Proceedings of Fourth Berkeley Symposium on Mathematics, Statistics,
and Probability, volume 4, pages 223-239. University of California
Press, Berkeley, 1960.
[Fow1992] D. Fowler, P. Prusinkiewicz, and J.
Battjes. A collision-based model of spiral phyllotaxis. Computer Graphics
(SIGGRAPH '92 Proceedings), 26:361-368, July 1992.
[Fuj1991] H. Fujikawa and M. Matsushita. Bacterial
fractal growth in the concentration field of nutrient. Journal of
the Physical Society of Japan, 60(1):88-94, 1991.
[Gie1972] A. Gierer and H. Meinhardt. A theory
of biological pattern formation. Kybernetik, 12, 30-39, 1972.
[Gre1989] N. Greene. Voxel space automata: Modeling
with stochastic growth processes in voxel space. Computer Graphics
23,4 (August 1989), pages 175-184.
[Gre1991] N. Greene. Detailing tree skeletons
with voxel automata. SIGGRAPH '91 Course Notes on Photorealistic
Volume Modeling and Rendering Techniques, 1991.
[Kaa1992] J. Kaandorp. Modeling growth
forms of biological objects using fractals. PhD thesis, University
of Amsterdam, May 1992.
[Kaa1994] J. Kaandorp. Fractal modelling:
Growth and form in biology. Springer-Verlag, Berlin, 1994. In press.
[Lin1968] A. Lindenmayer. Mathematical
models for cellular interaction in development, Parts I and II. Journal
of Theoretical Biology, 18:280-315, 1968.
[Man1990] B. Mandelbrot and C. Evertsz.
The potential distribution around growing fractal clusters. Nature,
volume 348, pages 143-145, 1990.
[Mat1990] M. Matsushita and H. Fujikawa.
Diffusion-limited growth in bacterial colony formation. Physica A,
168:498-508, 1990.
[Mea1986] P. Meakin. A new model for biological
pattern formation. Journal of Theoretical Biology, 118:101-113,
1986.
[Mei1982] H. Meinhardt. Models of biological
pattern formation. Academic Press, London, 1982.
[Mei1984] H. Meinhardt. Models for positional
signalling, the threefold subdivision of segments and the pigmentation patterns
of molluscs. J. Embryol. exp. Morph., 83:289-311, 1984. Supplement.
[Mei1987a] H. Meinhardt and M. Klinger.
Pattern formation by coupled oscillations: The pigmentation patterns on
the shells of molluscs. In Lecture Notes in Biomathematics,
volume 71, pages 184-198. Springer-Verlag, Berlin, 1987.
[Mei1987b] H. Meinhardt and M. Klinger.
A model for pattern formation on the shells of molluscs. Journal of
Theoretical Biology, 126:63-89, 1987.
[Pru1990] P. Prusinkiewicz and A. Lindenmayer.
The algorithmic beauty of plants. Springer-Verlag, New York,
1990. With J. S. Hanan, F. D. Fracchia, D. R. Fowler, M. J. M. de Boer,
and L. Mercer.
[Pru1993] P. Prusinkiewicz. Modeling
and visualization of biological structures. In Proceedings of Graphics
Interface '93, pages 128-137, 1993.
[Pru1994a] P. Prusinkiewicz. Visual
Models of Morphogenesis. In Artificial Life, 1(1/2):67-74,
1994.
[Pru1994b] P. Prusinkiewicz, W. Remphrey,
C. Davidson, and M. Hammel. Modeling the architecture of expanding Fraxinus
pennsylvanica shoots using L-systems. Canadian Journal of Botany,
72:701-714, 1994.
[Pru1994c] P. Prusinkiewicz, M. James,
and R. Mech. Synthetic Topiary. Computer Graphics (SIGGRAPH '94 Proceedings),
28:351-358, 1994.
[Smi1984] A. R. Smith. Plants, fractals, and
formal languages. Computer Graphics, 18, 3 (July 1984), pages
1-10.
[Tay1992] C. E. Taylor ``Fleshing Out'' Artificial
Life II. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors,
Artificial Life II, pages 25-38. Addison-Wesley, Redwood City,
1992.
[Tur1952] A. Turing. The chemical basis of morphogenesis.
Philosophical Transactions of the Royal Society B, 237:37-72,
1952.
[Tur1991] G. Turk. Generating textures on arbitrary
surfaces using reaction-diffusion. Computer Graphics, 25, 4
(July 1991), pages 28-298.
[Ula1962] S. Ulam. On some mathematical properties
connected with patterns of growth of figures. In Proceedings of Symposia
on Applied Mathematics, volume 14, pages 215-224. American Mathematical
Society, 1962.
[Wit1991] A. Witkin and M. Kass. Reaction-diffusion
textures. Computer Graphics, 25, 4 (July 1991), pages 299-308.
[Wit1983] T. Witten and L. Sander. Diffusion-limited
aggregation. Phys. Rev. B 27:5686-5697, 1983.
[You1984] D. A. Young. A local activator-inhibitor
model of vertebrate skin patterns. Math. Biosciences, 72:51-58,
1984. |