1. LON-CAPA Logo
  2. Help
  3. Log In
 


 

 

Acknowledge

Table of Contents

Plates

 

References

[Bat1992] J. Battjes, K. Bachmann, and F. Bouman. Early development of capitula in Microseris pygmaea D. Don strains C96 and A92 (Asteraceae: Lactuceae). Botanische Jahrbücher Systematik, 113(4):461-475, 1992.

[Bel1985] A. D. Bell. On the astogeny of six-cornered clones: an aspect of modular construction. In J. White, editor, Studies on plant demography: A festschrift for John L. Harper, pages 187-207. Academic Press, London, 1985

[Cam1993] S. Camazine. Designed by Nature. The World and I, pages 202-208, March 1993.

[Ede1960] M. Eden. A two-dimensional growth process. In Proceedings of Fourth Berkeley Symposium on Mathematics, Statistics, and Probability, volume 4, pages 223-239. University of California Press, Berkeley, 1960.

[Fow1992] D. Fowler, P. Prusinkiewicz, and J. Battjes. A collision-based model of spiral phyllotaxis. Computer Graphics (SIGGRAPH '92 Proceedings), 26:361-368, July 1992.

[Fuj1991] H. Fujikawa and M. Matsushita. Bacterial fractal growth in the concentration field of nutrient. Journal of the Physical Society of Japan, 60(1):88-94, 1991.

[Gie1972] A. Gierer and H. Meinhardt. A theory of biological pattern formation. Kybernetik, 12, 30-39, 1972.

[Gre1989] N. Greene. Voxel space automata: Modeling with stochastic growth processes in voxel space. Computer Graphics 23,4 (August 1989), pages 175-184.

[Gre1991] N. Greene. Detailing tree skeletons with voxel automata. SIGGRAPH '91 Course Notes on Photorealistic Volume Modeling and Rendering Techniques, 1991.

[Kaa1992] J. Kaandorp. Modeling growth forms of biological objects using fractals. PhD thesis, University of Amsterdam, May 1992.

[Kaa1994] J. Kaandorp. Fractal modelling: Growth and form in biology. Springer-Verlag, Berlin, 1994. In press.

[Lin1968] A. Lindenmayer. Mathematical models for cellular interaction in development, Parts I and II. Journal of Theoretical Biology, 18:280-315, 1968.

[Man1990] B. Mandelbrot and C. Evertsz. The potential distribution around growing fractal clusters. Nature, volume 348, pages 143-145, 1990.

[Mat1990] M. Matsushita and H. Fujikawa. Diffusion-limited growth in bacterial colony formation. Physica A, 168:498-508, 1990.

[Mea1986] P. Meakin. A new model for biological pattern formation. Journal of Theoretical Biology, 118:101-113, 1986.

[Mei1982] H. Meinhardt. Models of biological pattern formation. Academic Press, London, 1982.

[Mei1984] H. Meinhardt. Models for positional signalling, the threefold subdivision of segments and the pigmentation patterns of molluscs. J. Embryol. exp. Morph., 83:289-311, 1984. Supplement.

[Mei1987a] H. Meinhardt and M. Klinger. Pattern formation by coupled oscillations: The pigmentation patterns on the shells of molluscs. In Lecture Notes in Biomathematics, volume 71, pages 184-198. Springer-Verlag, Berlin, 1987.

[Mei1987b] H. Meinhardt and M. Klinger. A model for pattern formation on the shells of molluscs. Journal of Theoretical Biology, 126:63-89, 1987.

[Pru1990] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of plants. Springer-Verlag, New York, 1990. With J. S. Hanan, F. D. Fracchia, D. R. Fowler, M. J. M. de Boer, and L. Mercer.

[Pru1993] P. Prusinkiewicz. Modeling and visualization of biological structures. In Proceedings of Graphics Interface '93, pages 128-137, 1993.

[Pru1994a] P. Prusinkiewicz. Visual Models of Morphogenesis. In Artificial Life, 1(1/2):67-74, 1994.

[Pru1994b] P. Prusinkiewicz, W. Remphrey, C. Davidson, and M. Hammel. Modeling the architecture of expanding Fraxinus pennsylvanica shoots using L-systems. Canadian Journal of Botany, 72:701-714, 1994.

[Pru1994c] P. Prusinkiewicz, M. James, and R. Mech. Synthetic Topiary. Computer Graphics (SIGGRAPH '94 Proceedings), 28:351-358, 1994.

[Smi1984] A. R. Smith. Plants, fractals, and formal languages. Computer Graphics, 18, 3 (July 1984), pages 1-10.

[Tay1992] C. E. Taylor ``Fleshing Out'' Artificial Life II. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Artificial Life II, pages 25-38. Addison-Wesley, Redwood City, 1992.

[Tur1952] A. Turing. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B, 237:37-72, 1952.

[Tur1991] G. Turk. Generating textures on arbitrary surfaces using reaction-diffusion. Computer Graphics, 25, 4 (July 1991), pages 28-298.

[Ula1962] S. Ulam. On some mathematical properties connected with patterns of growth of figures. In Proceedings of Symposia on Applied Mathematics, volume 14, pages 215-224. American Mathematical Society, 1962.

[Wit1991] A. Witkin and M. Kass. Reaction-diffusion textures. Computer Graphics, 25, 4 (July 1991), pages 299-308.

[Wit1983] T. Witten and L. Sander. Diffusion-limited aggregation. Phys. Rev. B 27:5686-5697, 1983.

[You1984] D. A. Young. A local activator-inhibitor model of vertebrate skin patterns. Math. Biosciences, 72:51-58, 1984.